skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xie, Shucheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Temperature is the key variable in the study of climate changes in the past and future. Most previous studies on past temperature reconstructions, however, have focused on the mean annual temperature (MAT). Here, focusing on the seasonal temperature reconstructions in the Northern Hemisphere extratropics during the Holocene period, we show that the change in seasonal cycle of temperature reconstructions is severely underestimated in comparison with the expectation from present observations. Our study highlights the current uncertainty in seasonal temperature reconstructions in the Holocene, with an implication that the MAT simulation in current climate models may not be much biased. 
    more » « less
    Free, publicly-accessible full text available April 25, 2026
  2. The Holocene hydroclimate evolution and underlying mechanisms modulating the East Asian summer monsoon (EASM) remains controversial, especially in south eastern China. Here we present a multiproxy peat record of monsoon evolution from southeastern China covering the last 14 ka. Our new records show a relatively weaker EASM but wetter hydroclimate during the early (10 to 8 ka) and late Holocene (after 5.4 ka), while a stronger EASM and overall drier climate during the mid-Holocene (8 to 5.4 ka). In line with nearby speleothem records, our results reveal a dominant control of the northern-latitude ice-sheet meltwater forcing on millennial-scale East Asian hydroclimate variability during the last deglaciation and early Holocene. This dominant influence, however, likely waned once the global sea level had stabilized during the mid-to-late Holocene, giving way to other drivers of the monsoon and hydroclimate, including a combination of summer insolation and teleconnection patterns associated with vegetation-dust feedbacks. 
    more » « less
  3. null (Ed.)